IMPERIAL

Automatic Segmentation of the Knee using Artificial intelligence on a Novel MRI Scanner: MADI (Magic Angle Directional Imaging)

Dr Nasir Kharma¹ Mr Chinmay Gupte¹ Dr Mihailo Ristic² Dr Dimitris Amiras³

Dr Harry Lanz¹

Introduction:

Background:

- **ACL & Meniscal Injuries are common and cause** major problems in young & athlete patients
- MADI uses the magic angle effect to directly visualise collagenous structures on MRI
- Tractography allows us to take a region of interest (ROI) and visualise fibre orientation, direction, and integrity in detail
- Manual segmentation of the ROI is a timeconsuming process, giving rise to automatic methods e.g. Convolutional Neural Networks

- Prepare a novel MADI MRI dataset
- Benchmark two deep learning segmentation models (3DU-Net & nnU-net) on MADI and conventional datasets
- **Evaluate segmentation outputs quantitatively** and qualitatively using 3D renders

Methods:

Datasets:

Name	Volumes	Patients	Segmented Structures	Segmentation Source	Resolution (mm)
IWOAI	176	88	Cartilage (Patella, Tibia), Meniscus	Expert Radiologist	0.36x0.36x0.7
OAI-ZIB	507	507	Cartilage (Femur, Tibia), Bone (Femur, Tibia)	Expert Radiologist	0.36x0.36x0.7
MADI	183	23	Meniscus, ACL	Radiologist, Radiographer, PhD Student	1.0x1.0x1.0

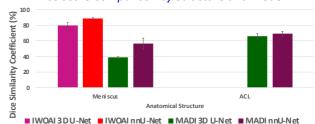
Deep Learning Models:

3DU-Net: CNN designed for volumetric medical image segmentation. Not robust + requires manual tuning nnU-Net: CNN based on U-Net with a self-configuring pipeline and automatic tuning. Strong generalisation

Evaluation metrics:

Dice Score (DSC): measures overlap between predicted and ground truth segmentation - % of shared pixels Intersection Over Union (IOU): measures overlap but penalises mismatches & over-segmentation more heavily

Results:


IWOAI:

Structure	Model	Dice (%) ± SD
Meniscus	3D U-Net	79.29 ± 4.21
Meniscus	nnU-Net	88.09 ± 2.29
Tibial Cartilage	3D U-Net	82.81 ± 4.69
Tibial Cartilage	nnU-Net	88.21±3.04
Patellar Cartilage	3D U-Net	63.07 ± 16.45
Patellar Cartilage	nnU-Net	84.98 ± 7.81

MADI:

Structure	Model	Dice (%) ± SD
ACL	3D U-Net	$\textbf{66.09} \pm \textbf{0.03}$
ACL	nnU-Net	69.04 ± 2.63
	p-value	< 0.01
Meniscus	3D U-Net	$\textbf{38.56} \pm \textbf{6.39}$
Meniscus	nnU-Net	56.41 ± 17.32
	n-value	< 0.01

Dice Score Comparison by Structure and Model

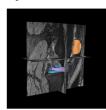


Figure 11d - 3D render of

Figure 11b – Raw MRI + Ground

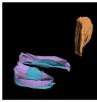


Figure 11e - 3D render of Meniscus (purple) Tibial Cartilage (blue)

Patellar Cartilage (orange)



Figure 11c – Raw MRI +

Figure 11f - 3D render of

Figure 15a – Raw MRI

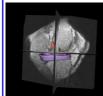
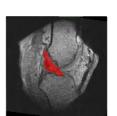



Figure 15d - 3D render of

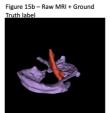


Figure 15e - 3D render of

Figure 15c – Raw MRI +

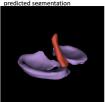


Figure 15f – 3D render of

Limitations

- · Lack of Public ACL datasets limits benchmarking
- Small & homogenous MADI dataset
- MADI label variability and high signal to noise ratio MADI has the potential to reduce diagnostic

Clinical Translation

- MADI offers non-invasive, collagen-sensitive MRI
- · Al Segmentations improve tractography accuracy
- Misleading evaluation Metrics for small structures arthroscopy and provide a virtual arthroscopy

Future Work:

- **Expand and diversify the MADI dataset**
- Improve label quality and standardisation
- Explore transformer-based models, image resampling and noise reduction

References:

Conclusion:

This research presents the first deep learning-based segmentation of ACL and meniscus on MADI data. Despite reduced quantitative performance, qualitative results demonstrate strong anatomical plausibility and usefulness for downstream tractography, laying the groundwork for virtual arthroscopy.