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Introduction:
Background:
• ACL & Meniscal Injuries are common and cause 

major problems in young & athlete patients
• MADI uses the magic angle effect to directly 

visualise collagenous structures on MRI 
• Tractography allows us to take a region of 

interest (ROI) and visualise fibre orientation, 
direction, and integrity in detail

• Manual segmentation of the ROI is a time-
consuming process, giving rise to automatic 
methods e.g. Convolutional Neural Networks.

Aims:
• Prepare a novel MADI MRI dataset
• Benchmark two deep learning segmentation 

models (3DU-Net & nnU-net) on MADI and 
conventional datasets

• Evaluate segmentation outputs quantitatively 
and qualitatively using 3D renders

Methods:
Datasets:

Deep Learning Models:
3DU-Net: CNN designed for volumetric medical image segmentation. Not robust + requires manual tuning
nnU-Net: CNN based on U-Net with a self-configuring pipeline and automatic tuning. Strong generalisation

Evaluation metrics:
Dice Score (DSC): measures overlap between predicted and ground truth segmentation – % of shared pixels
Intersection Over Union (IOU): measures overlap but penalises mismatches & over-segmentation more heavily

Results:
IWOAI:                                                                     MADI:

nnU-Net on IWOAI                                                                                                           nnU-Net on MADI

Limitations:

• Lack of Public ACL datasets limits benchmarking
• Small & homogenous MADI dataset
• MADI label variability and high signal to noise ratio
• Misleading evaluation Metrics for small structures

Name Volumes Patients Segmented Structures Segmentation Source Resolution (mm)
IWOAI 176 88 Cartilage (Patella, Tibia), 

Meniscus
Expert Radiologist 0.36x0.36x0.7

OAI-ZIB 507 507 Cartilage (Femur, Tibia), 
Bone (Femur, Tibia)

Expert Radiologist 0.36x0.36x0.7

MADI 183 23 Meniscus, ACL Radiologist, Radiographer, 
PhD Student

1.0x1.0x1.0

Structure Model Dice (%) ± SD
Meniscus 3D U-Net 79.29 ± 4.21
Meniscus nnU-Net 88.09 ± 2.29

Tibial Cartilage 3D U-Net 82.81 ± 4.69
Tibial Cartilage nnU-Net 88.21 ± 3.04

Patellar Cartilage 3D U-Net 63.07 ± 16.45
Patellar Cartilage nnU-Net 84.98 ± 7.81

Structure Model Dice (%) ± SD
ACL 3D U-Net 66.09 ± 0.03
ACL nnU-Net 69.04 ± 2.63

p-value < 0.01
Meniscus 3D U-Net 38.56 ± 6.39
Meniscus nnU-Net 56.41 ± 17.32

p-value < 0.01
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Conclusion:

This research presents the first deep learning-based segmentation of ACL and meniscus on MADI data. 
Despite reduced quantitative performance, qualitative results demonstrate strong anatomical plausibility 
and usefulness for downstream tractography, laying the groundwork for virtual arthroscopy.

Future Work:

• Expand and diversify the MADI dataset
• Improve label quality and standardisation
• Explore transformer-based models, image resampling 

and noise reduction

Clinical Translation:

• MADI offers non-invasive, collagen-sensitive MRI
• AI Segmentations improve tractography accuracy
• MADI has the potential to reduce diagnostic 

arthroscopy and provide a virtual arthroscopy


