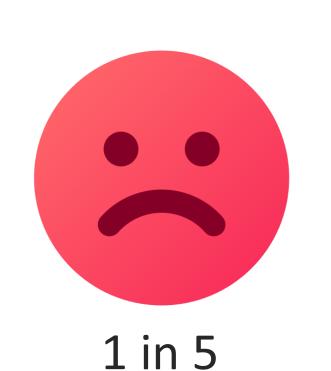


Sagittal Total Knee Replacement (TKR) Alignment aNd Clinical OutcomEs: A Systematic Review and Meta-Analysis (STANCE)


University Hospitals
Coventry and Warwickshire

Kumar PR^{1,2}, Sumra S³, Carnell A³, Kumar RV³, Selim A⁴, Farhan-Alanie M^{1,2}, Parsons H¹, Metcalfe A^{1,2}

1 Warwick Medical School, University of Warwick, Coventry, UK. 2 Trauma and Orthopaedics Surgery, University Hospital Coventry & Warwickshire, Coventry, UK. 3 School of Clinical Medicine, University of Cambridge, Cambridge, UK. 4 The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK.

BACKGROUND

 Over 116,000 TKRs are performed each year in the UK, costing the NHS £750 million annually

dissatisfied

55% ongoing pain

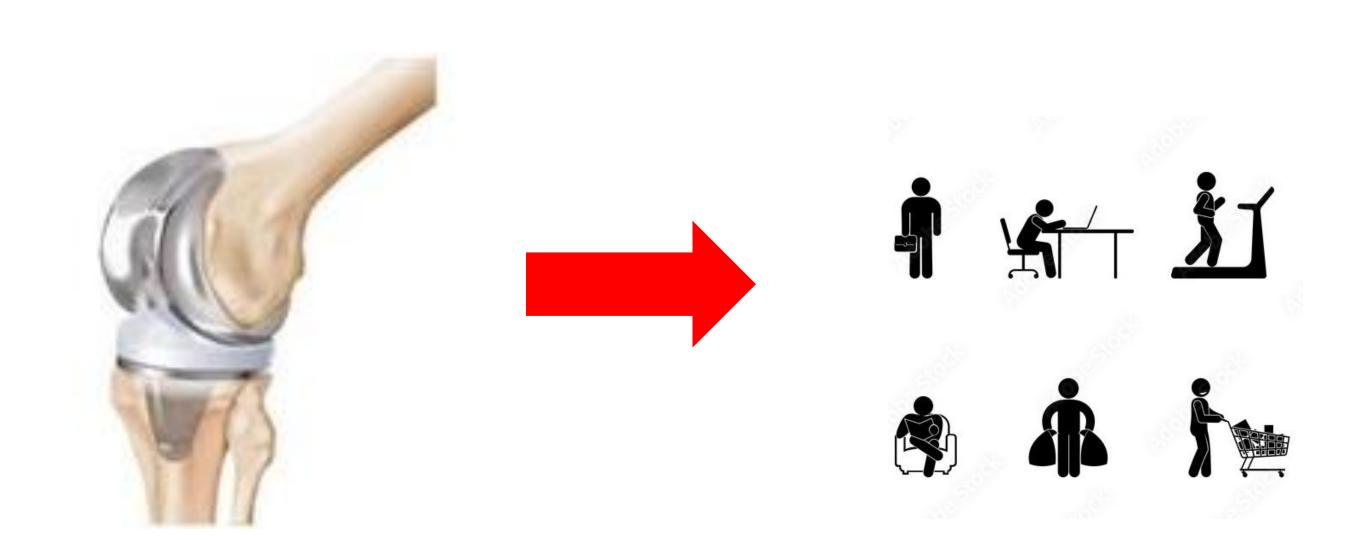
£750M/year NHS

- **Post-operative knee alignment** is a key modifiable factor influencing Patient Reported Outcome Measures (PROMs)
- But most research focuses only on coronal (front-view) alignment in 2D.
- We need to assess how **3D sagittal alignment** impacts what matters most: **patient outcomes**.

OBJECTIVE

To explore the relationship between post-operative alignment from side (sagittal) and PROMs.

METHODS


- We conducted PROSPERO-registered meta-analysis [CRD42024584335]
- Five electronic databases until 2025 for studies reporting post-TKR sagittal alignment and PROMs.
- Case-weighted meta-regression models assessed sagittal alignment—PROM relationships
 - across individual timepoints post-TKR,
 - across all timepoints (pooled effects)
- Results are reported as regression coefficient (RC) and 95% confidence intervals (95%CI).

Identification of new studies via databases and registers Records identified from Databases (n = 4): Pubmed (n = 234) Records removed before screening: Embase (n = 281) Duplicate records (n = 572) Records marked as ineligible by automation Scopus (n = 263) Web of Science (n = 159) Records removed for other reasons (n = 0)Registers (n = 1): Cochrane Central Register of Controlled Trials (n = 257) Records excluded (n = 463)Reports sought for retrieval Reports not retrieved Reports excluded: Not meet population inclusion criteria (n = 32) Reports assessed for eligibility No PROMs (n = 9) No Sagittal Parameters (n = 9)No Extractable Data (n = 21) Systematic Review (n = 17)New studies included in review New Studies identified through other Reports of new included studies methods (n = 1)(n = 50)

RESULTS

Of 622 studies, 51 were included(N=10,769 TKRs).

- Higher Femoral-Flexion(FF) was associated with improved
- Knee-Society-Score (KSS) (FF:RC=0.83,95%CI=0.53-1.14,n=510) across all timepoints.
 - Knee-Injury-and-Osteoarthritis-Outcome-Score (KOOS) (FF:RC=1.42,95%CI=0.62 2.21,n=400) across all timepoints.
- Lower Femoral-Sagittal-Angle(FSA, range:0.90-3.80) was associated with improved
 - KSS(RC=-6.09,95%CI=-7.63- -4.54,n=280) at all timepoints
 - KSS (RC=-6.29,95%CI=8.68- -3.903,n=160) at 12 months
- **Higher Posterior-Condylar-Offset(PCO**, range:24.00-33.60) was associated with improved
 - KSS(RC=31.6,95%CI=23.52-39.76,n=338) across all timepoints
 - KSS at 12 months(RC=31.9,95%CI=19.8-43.9,n=613).
- Higher Posterior-Tibia-Slope(PTS, range:-5.00-8.86) was associated with
 - Visual-Analogue-Scale-Pain scores (RC=1.00,p<0.001,n=90) at 1 month
 - Oxford-Knee-Score (RC=3.28,p=0.009,n=117) at 6 months
 - KSS-Knee (RC=3.29,p=0.002,n=150) at 24 months
 - BUT pooled analysis across all timepoints didn't show significant relationship with PROMs.

Sagittal Alignment

Patient Outcomes

Need For This Research & Future Direction

- This review shows that sagittal alignment influences PROMs, with higher Femoral Flexion, lower Femoral Sagittal Angle, and greater Posterior Condylar Offset associated with improved patient outcomes.
- We urge a shift from outdated 2D thinking to a true 3D understanding of knee alignment.
- A clear consensus on what core sagittal parameters must be reported is now essential to standardise and strengthen future research.

REFERENCES

Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine. 2020 Dec;29–30:100587.

Gardner J, Roman ER, Bhimani R, Mashni SJ, Whitaker JE, Smith LS, et al. Aetiology of patient dissatisfaction following primary total knee arthroplasty in the era of robotic-assisted technology: a review of 674 cases. Bone Jt Open [Internet]. 2024 Sep 12 [cited 2024 Oct 28];5(9):758–65.